Tích phân chập Hệ_thống_tuyến_tính

Đầu ra của bất kỳ hệ thống tuyến tính liên tục theo thời gian nói chung nào cũng liên quan đến đầu vào bởi một tích phân mà có thể được viết trên một khoảng vô hạn gấp đôi do điều kiện nhân quả:

y ( t ) = ∫ − ∞ t h ( t , t ′ ) x ( t ′ ) d t ′ = ∫ − ∞ ∞ h ( t , t ′ ) x ( t ′ ) d t ′ {\displaystyle y(t)=\int _{-\infty }^{t}h(t,t')x(t')dt'=\int _{-\infty }^{\infty }h(t,t')x(t')dt'}

Nếu các thuộc tính của hệ thống không phụ thuộc vào thời điểm làm việc thì ta gọi đó là bất biến theo thời gian và h() là một hàm duy nhất theo thời gian chênh lệch τ = t-t' và bằng zero đối với τ <0 (Cụ thể t <t'). Bằng cách xác định lại h(), ta có thể viết mối quan hệ đầu vào-đầu ra tương đương như sau,

y ( t ) = ∫ − ∞ t h ( t − t ′ ) x ( t ′ ) d t ′ = ∫ − ∞ ∞ h ( t − t ′ ) x ( t ′ ) d t ′ = ∫ − ∞ ∞ h ( τ ) x ( t − τ ) d τ = ∫ 0 ∞ h ( τ ) x ( t − τ ) d τ {\displaystyle y(t)=\int _{-\infty }^{t}h(t-t')x(t')dt'=\int _{-\infty }^{\infty }h(t-t')x(t')dt'=\int _{-\infty }^{\infty }h(\tau )x(t-\tau )d\tau =\int _{0}^{\infty }h(\tau )x(t-\tau )d\tau }

Các hệ thống bất biến thời gian tuyến tính thường được mô tả bằng biến đổi Laplace của hàm đáp ứng xung được gọi là hàm truyền đó là:

H ( s ) = ∫ 0 ∞ h ( t ) e − s t d t . {\displaystyle H(s)=\int _{0}^{\infty }h(t)e^{-st}\,dt.}

Đây này thường là một hàm hữu tỷ theo s. Bởi vì h(t) bằng không đối với t âm, tích phân này có thể được lấy từ âm vô cùng đến dương vô cùng và đặt s = iω theo công thức cho hàm đáp ứng tần số:

H ( i ω ) = ∫ − ∞ ∞ h ( t ) e − i ω t d t {\displaystyle H(i\omega )=\int _{-\infty }^{\infty }h(t)e^{-i\omega t}dt}